1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
# Prepare training data and setting parameters
iris = pd.read_csv('/data/iris.csv')
X = iris.drop(['virginica'],axis=1)
y = iris[['virginica']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565)
params = {
'booster': 'gbtree',
'objective': 'multi:softmax',
'num_class': 3,
'gamma': 0.1,
'max_depth': 6,
'lambda': 2,
'subsample': 0.7,
'colsample_bytree': 0.7,
'min_child_weight': 3,
'silent': 1,
'eta': 0.1,
'seed': 1000,
'nthread': 4,
}
plst = params.items()
dtrain = xgb.DMatrix(X_train, y_train)
num_rounds = 500
model = xgb.train(plst, dtrain, num_rounds)
model.save_model('/tmp/xgboost.m')
|
After the model is saved, it must be uploaded to the OBS directory before being published. The config.json and customize_service.py files must be contained during publishing. For details about the definition method, see Model Package Specifications.
# coding:utf-8 import collections import json import xgboost as xgb from model_service.python_model_service import XgSklServingBaseService class user_Service(XgSklServingBaseService): # request data preprocess def _preprocess(self, data): list_data = [] json_data = json.loads(data, object_pairs_hook=collections.OrderedDict) for element in json_data["data"]["req_data"]: array = [] for each in element: array.append(element[each]) list_data.append(array) return list_data # predict def _inference(self, data): xg_model = xgb.Booster(model_file=self.model_path) pre_data = xgb.DMatrix(data) pre_result = xg_model.predict(pre_data) pre_result = pre_result.tolist() return pre_result # predict result process def _postprocess(self,data): resp_data = [] for element in data: resp_data.append({"predictresult": element}) return resp_data