Redis supports only enhanced datasource connections.
An enhanced datasource connection has been created on the DLI management console and bound to a queue in packages.
Hard-coded or plaintext passwords pose significant security risks. To ensure security, encrypt your passwords, store them in configuration files or environment variables, and decrypt them when needed.
1 2 3 4 5 | <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.3.2</version> </dependency> |
1 2 3 4 5 6 7 8 | import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.*; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import java.util.*; |
1 2 3 4 5 6 7 8 | SparkConf sparkConf = new SparkConf(); sparkConf.setAppName("datasource-redis") .set("spark.redis.host", "192.168.4.199") .set("spark.redis.port", "6379") .set("spark.redis.auth", "******") .set("spark.driver.allowMultipleContexts","true"); JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); SQLContext sqlContext = new SQLContext(javaSparkContext); |
1 2 3 4 | JavaRDD<String> javaRDD = javaSparkContext.parallelize(Arrays.asList( "{\"id\":\"1\",\"name\":\"Ann\",\"age\":\"18\"}", "{\"id\":\"2\",\"name\":\"lisi\",\"age\":\"21\"}")); Dataset dataFrame = sqlContext.read().json(javaRDD); |
1 2 3 | Map map = new HashMap<String, String>(); map.put("table","person"); map.put("key.column","id"); |
1 | dataFrame.write().format("redis").options(map).mode(SaveMode.Overwrite).save(); |
1 | sqlContext.read().format("redis").options(map).load().show(); |
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | public class Test_Redis_DaraFrame { public static void main(String[] args) { //create a SparkSession session SparkConf sparkConf = new SparkConf(); sparkConf.setAppName("datasource-redis") .set("spark.redis.host", "192.168.4.199") .set("spark.redis.port", "6379") .set("spark.redis.auth", "******") .set("spark.driver.allowMultipleContexts","true"); JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); SQLContext sqlContext = new SQLContext(javaSparkContext); //Read RDD in JSON format to create DataFrame JavaRDD<String> javaRDD = javaSparkContext.parallelize(Arrays.asList( "{\"id\":\"1\",\"name\":\"Ann\",\"age\":\"18\"}", "{\"id\":\"2\",\"name\":\"lisi\",\"age\":\"21\"}")); Dataset dataFrame = sqlContext.read().json(javaRDD); Map map = new HashMap<String, String>(); map.put("table","person"); map.put("key.column","id"); dataFrame.write().format("redis").options(map).mode(SaveMode.Overwrite).save(); sqlContext.read().format("redis").options(map).load().show(); } } |