1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
from model_service.caffe_model_service import CaffeBaseService
import numpy as np
import os, json
import caffe
from PIL import Image
class LenetService(CaffeBaseService):
def __init__(self, model_name, model_path):
# Call the inference method of the parent class.
super(LenetService, self).__init__(model_name, model_path)
# Configure preprocessing information.
transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
# Transform to NCHW.
transformer.set_transpose('data', (2, 0, 1))
# Perform normalization.
transformer.set_raw_scale('data', 255.0)
# If the batch size is set to 1, inference is supported for only one image.
self.net.blobs['data'].reshape(1, 1, 28, 28)
self.transformer = transformer
# Define the class labels.
self.label = [0,1,2,3,4,5,6,7,8,9]
def _preprocess(self, data):
for k, v in data.items():
for file_name, file_content in v.items():
im = caffe.io.load_image(file_content, color=False)
# Pre-process the images.
self.net.blobs['data'].data[...] = self.transformer.preprocess('data', im)
return
def _postprocess(self, data):
data = data['prob'][0, :]
predicted = np.argmax(data)
predicted = {"predicted" : str(predicted) }
return predicted
|