forked from docs/modelarts
414 lines
39 KiB
ReStructuredText
414 lines
39 KiB
ReStructuredText
Caffe
|
|
=====
|
|
|
|
Training and Saving a Model
|
|
---------------------------
|
|
|
|
**lenet_train_test.prototxt** file
|
|
|
|
+-----------------------------------+--------------------------------------------------+
|
|
| :: | :: |
|
|
| | |
|
|
| 1 | name: "LeNet" |
|
|
| 2 | layer { |
|
|
| 3 | name: "mnist" |
|
|
| 4 | type: "Data" |
|
|
| 5 | top: "data" |
|
|
| 6 | top: "label" |
|
|
| 7 | include { |
|
|
| 8 | phase: TRAIN |
|
|
| 9 | } |
|
|
| 10 | transform_param { |
|
|
| 11 | scale: 0.00390625 |
|
|
| 12 | } |
|
|
| 13 | data_param { |
|
|
| 14 | source: "examples/mnist/mnist_train_lmdb" |
|
|
| 15 | batch_size: 64 |
|
|
| 16 | backend: LMDB |
|
|
| 17 | } |
|
|
| 18 | } |
|
|
| 19 | layer { |
|
|
| 20 | name: "mnist" |
|
|
| 21 | type: "Data" |
|
|
| 22 | top: "data" |
|
|
| 23 | top: "label" |
|
|
| 24 | include { |
|
|
| 25 | phase: TEST |
|
|
| 26 | } |
|
|
| 27 | transform_param { |
|
|
| 28 | scale: 0.00390625 |
|
|
| 29 | } |
|
|
| 30 | data_param { |
|
|
| 31 | source: "examples/mnist/mnist_test_lmdb" |
|
|
| 32 | batch_size: 100 |
|
|
| 33 | backend: LMDB |
|
|
| 34 | } |
|
|
| 35 | } |
|
|
| 36 | layer { |
|
|
| 37 | name: "conv1" |
|
|
| 38 | type: "Convolution" |
|
|
| 39 | bottom: "data" |
|
|
| 40 | top: "conv1" |
|
|
| 41 | param { |
|
|
| 42 | lr_mult: 1 |
|
|
| 43 | } |
|
|
| 44 | param { |
|
|
| 45 | lr_mult: 2 |
|
|
| 46 | } |
|
|
| 47 | convolution_param { |
|
|
| 48 | num_output: 20 |
|
|
| 49 | kernel_size: 5 |
|
|
| 50 | stride: 1 |
|
|
| 51 | weight_filler { |
|
|
| 52 | type: "xavier" |
|
|
| 53 | } |
|
|
| 54 | bias_filler { |
|
|
| 55 | type: "constant" |
|
|
| 56 | } |
|
|
| 57 | } |
|
|
| 58 | } |
|
|
| 59 | layer { |
|
|
| 60 | name: "pool1" |
|
|
| 61 | type: "Pooling" |
|
|
| 62 | bottom: "conv1" |
|
|
| 63 | top: "pool1" |
|
|
| 64 | pooling_param { |
|
|
| 65 | pool: MAX |
|
|
| 66 | kernel_size: 2 |
|
|
| 67 | stride: 2 |
|
|
| 68 | } |
|
|
| 69 | } |
|
|
| 70 | layer { |
|
|
| 71 | name: "conv2" |
|
|
| 72 | type: "Convolution" |
|
|
| 73 | bottom: "pool1" |
|
|
| 74 | top: "conv2" |
|
|
| 75 | param { |
|
|
| 76 | lr_mult: 1 |
|
|
| 77 | } |
|
|
| 78 | param { |
|
|
| 79 | lr_mult: 2 |
|
|
| 80 | } |
|
|
| 81 | convolution_param { |
|
|
| 82 | num_output: 50 |
|
|
| 83 | kernel_size: 5 |
|
|
| 84 | stride: 1 |
|
|
| 85 | weight_filler { |
|
|
| 86 | type: "xavier" |
|
|
| 87 | } |
|
|
| 88 | bias_filler { |
|
|
| 89 | type: "constant" |
|
|
| 90 | } |
|
|
| 91 | } |
|
|
| 92 | } |
|
|
| 93 | layer { |
|
|
| 94 | name: "pool2" |
|
|
| 95 | type: "Pooling" |
|
|
| 96 | bottom: "conv2" |
|
|
| 97 | top: "pool2" |
|
|
| 98 | pooling_param { |
|
|
| 99 | pool: MAX |
|
|
| 100 | kernel_size: 2 |
|
|
| 101 | stride: 2 |
|
|
| 102 | } |
|
|
| 103 | } |
|
|
| 104 | layer { |
|
|
| 105 | name: "ip1" |
|
|
| 106 | type: "InnerProduct" |
|
|
| 107 | bottom: "pool2" |
|
|
| 108 | top: "ip1" |
|
|
| 109 | param { |
|
|
| 110 | lr_mult: 1 |
|
|
| 111 | } |
|
|
| 112 | param { |
|
|
| 113 | lr_mult: 2 |
|
|
| 114 | } |
|
|
| 115 | inner_product_param { |
|
|
| 116 | num_output: 500 |
|
|
| 117 | weight_filler { |
|
|
| 118 | type: "xavier" |
|
|
| 119 | } |
|
|
| 120 | bias_filler { |
|
|
| 121 | type: "constant" |
|
|
| 122 | } |
|
|
| 123 | } |
|
|
| 124 | } |
|
|
| 125 | layer { |
|
|
| 126 | name: "relu1" |
|
|
| 127 | type: "ReLU" |
|
|
| 128 | bottom: "ip1" |
|
|
| 129 | top: "ip1" |
|
|
| 130 | } |
|
|
| 131 | layer { |
|
|
| 132 | name: "ip2" |
|
|
| 133 | type: "InnerProduct" |
|
|
| 134 | bottom: "ip1" |
|
|
| 135 | top: "ip2" |
|
|
| 136 | param { |
|
|
| 137 | lr_mult: 1 |
|
|
| 138 | } |
|
|
| 139 | param { |
|
|
| 140 | lr_mult: 2 |
|
|
| 141 | } |
|
|
| 142 | inner_product_param { |
|
|
| 143 | num_output: 10 |
|
|
| 144 | weight_filler { |
|
|
| 145 | type: "xavier" |
|
|
| 146 | } |
|
|
| 147 | bias_filler { |
|
|
| 148 | type: "constant" |
|
|
| 149 | } |
|
|
| 150 | } |
|
|
| 151 | } |
|
|
| 152 | layer { |
|
|
| 153 | name: "accuracy" |
|
|
| 154 | type: "Accuracy" |
|
|
| 155 | bottom: "ip2" |
|
|
| 156 | bottom: "label" |
|
|
| 157 | top: "accuracy" |
|
|
| 158 | include { |
|
|
| 159 | phase: TEST |
|
|
| 160 | } |
|
|
| 161 | } |
|
|
| 162 | layer { |
|
|
| 163 | name: "loss" |
|
|
| 164 | type: "SoftmaxWithLoss" |
|
|
| 165 | bottom: "ip2" |
|
|
| 166 | bottom: "label" |
|
|
| 167 | top: "loss" |
|
|
| 168 | } |
|
|
+-----------------------------------+--------------------------------------------------+
|
|
|
|
**lenet_solver.prototxt** file
|
|
|
|
+-----------------------------------+---------------------------------------------------------------------------------+
|
|
| :: | :: |
|
|
| | |
|
|
| 1 | # The train/test net protocol buffer definition |
|
|
| 2 | net: "examples/mnist/lenet_train_test.prototxt" |
|
|
| 3 | # test_iter specifies how many forward passes the test should carry out. |
|
|
| 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, |
|
|
| 5 | # covering the full 10,000 testing images. |
|
|
| 6 | test_iter: 100 |
|
|
| 7 | # Carry out testing every 500 training iterations. |
|
|
| 8 | test_interval: 500 |
|
|
| 9 | # The base learning rate, momentum and the weight decay of the network. |
|
|
| 10 | base_lr: 0.01 |
|
|
| 11 | momentum: 0.9 |
|
|
| 12 | weight_decay: 0.0005 |
|
|
| 13 | # The learning rate policy |
|
|
| 14 | lr_policy: "inv" |
|
|
| 15 | gamma: 0.0001 |
|
|
| 16 | power: 0.75 |
|
|
| 17 | # Display every 100 iterations |
|
|
| 18 | display: 100 |
|
|
| 19 | # The maximum number of iterations |
|
|
| 20 | max_iter: 1000 |
|
|
| 21 | # snapshot intermediate results |
|
|
| 22 | snapshot: 5000 |
|
|
| 23 | snapshot_prefix: "examples/mnist/lenet" |
|
|
| 24 | # solver mode: CPU or GPU |
|
|
| 25 | solver_mode: CPU |
|
|
+-----------------------------------+---------------------------------------------------------------------------------+
|
|
|
|
Train the model.
|
|
|
|
.. code-block::
|
|
|
|
./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt
|
|
|
|
The **caffemodel** file is generated after model training. Rewrite the **lenet_train_test.prototxt** file to the **lenet_deploy.prototxt** file used for deployment by modifying input and output layers.
|
|
|
|
+-----------------------------------+-----------------------------------------------------------------+
|
|
| :: | :: |
|
|
| | |
|
|
| 1 | name: "LeNet" |
|
|
| 2 | layer { |
|
|
| 3 | name: "data" |
|
|
| 4 | type: "Input" |
|
|
| 5 | top: "data" |
|
|
| 6 | input_param { shape: { dim: 1 dim: 1 dim: 28 dim: 28 } } |
|
|
| 7 | } |
|
|
| 8 | layer { |
|
|
| 9 | name: "conv1" |
|
|
| 10 | type: "Convolution" |
|
|
| 11 | bottom: "data" |
|
|
| 12 | top: "conv1" |
|
|
| 13 | param { |
|
|
| 14 | lr_mult: 1 |
|
|
| 15 | } |
|
|
| 16 | param { |
|
|
| 17 | lr_mult: 2 |
|
|
| 18 | } |
|
|
| 19 | convolution_param { |
|
|
| 20 | num_output: 20 |
|
|
| 21 | kernel_size: 5 |
|
|
| 22 | stride: 1 |
|
|
| 23 | weight_filler { |
|
|
| 24 | type: "xavier" |
|
|
| 25 | } |
|
|
| 26 | bias_filler { |
|
|
| 27 | type: "constant" |
|
|
| 28 | } |
|
|
| 29 | } |
|
|
| 30 | } |
|
|
| 31 | layer { |
|
|
| 32 | name: "pool1" |
|
|
| 33 | type: "Pooling" |
|
|
| 34 | bottom: "conv1" |
|
|
| 35 | top: "pool1" |
|
|
| 36 | pooling_param { |
|
|
| 37 | pool: MAX |
|
|
| 38 | kernel_size: 2 |
|
|
| 39 | stride: 2 |
|
|
| 40 | } |
|
|
| 41 | } |
|
|
| 42 | layer { |
|
|
| 43 | name: "conv2" |
|
|
| 44 | type: "Convolution" |
|
|
| 45 | bottom: "pool1" |
|
|
| 46 | top: "conv2" |
|
|
| 47 | param { |
|
|
| 48 | lr_mult: 1 |
|
|
| 49 | } |
|
|
| 50 | param { |
|
|
| 51 | lr_mult: 2 |
|
|
| 52 | } |
|
|
| 53 | convolution_param { |
|
|
| 54 | num_output: 50 |
|
|
| 55 | kernel_size: 5 |
|
|
| 56 | stride: 1 |
|
|
| 57 | weight_filler { |
|
|
| 58 | type: "xavier" |
|
|
| 59 | } |
|
|
| 60 | bias_filler { |
|
|
| 61 | type: "constant" |
|
|
| 62 | } |
|
|
| 63 | } |
|
|
| 64 | } |
|
|
| 65 | layer { |
|
|
| 66 | name: "pool2" |
|
|
| 67 | type: "Pooling" |
|
|
| 68 | bottom: "conv2" |
|
|
| 69 | top: "pool2" |
|
|
| 70 | pooling_param { |
|
|
| 71 | pool: MAX |
|
|
| 72 | kernel_size: 2 |
|
|
| 73 | stride: 2 |
|
|
| 74 | } |
|
|
| 75 | } |
|
|
| 76 | layer { |
|
|
| 77 | name: "ip1" |
|
|
| 78 | type: "InnerProduct" |
|
|
| 79 | bottom: "pool2" |
|
|
| 80 | top: "ip1" |
|
|
| 81 | param { |
|
|
| 82 | lr_mult: 1 |
|
|
| 83 | } |
|
|
| 84 | param { |
|
|
| 85 | lr_mult: 2 |
|
|
| 86 | } |
|
|
| 87 | inner_product_param { |
|
|
| 88 | num_output: 500 |
|
|
| 89 | weight_filler { |
|
|
| 90 | type: "xavier" |
|
|
| 91 | } |
|
|
| 92 | bias_filler { |
|
|
| 93 | type: "constant" |
|
|
| 94 | } |
|
|
| 95 | } |
|
|
| 96 | } |
|
|
| 97 | layer { |
|
|
| 98 | name: "relu1" |
|
|
| 99 | type: "ReLU" |
|
|
| 100 | bottom: "ip1" |
|
|
| 101 | top: "ip1" |
|
|
| 102 | } |
|
|
| 103 | layer { |
|
|
| 104 | name: "ip2" |
|
|
| 105 | type: "InnerProduct" |
|
|
| 106 | bottom: "ip1" |
|
|
| 107 | top: "ip2" |
|
|
| 108 | param { |
|
|
| 109 | lr_mult: 1 |
|
|
| 110 | } |
|
|
| 111 | param { |
|
|
| 112 | lr_mult: 2 |
|
|
| 113 | } |
|
|
| 114 | inner_product_param { |
|
|
| 115 | num_output: 10 |
|
|
| 116 | weight_filler { |
|
|
| 117 | type: "xavier" |
|
|
| 118 | } |
|
|
| 119 | bias_filler { |
|
|
| 120 | type: "constant" |
|
|
| 121 | } |
|
|
| 122 | } |
|
|
| 123 | } |
|
|
| 124 | layer { |
|
|
| 125 | name: "prob" |
|
|
| 126 | type: "Softmax" |
|
|
| 127 | bottom: "ip2" |
|
|
| 128 | top: "prob" |
|
|
| 129 | } |
|
|
+-----------------------------------+-----------------------------------------------------------------+
|
|
|
|
Inference Code
|
|
--------------
|
|
|
|
+-----------------------------------+-----------------------------------------------------------------------------------------------+
|
|
| :: | :: |
|
|
| | |
|
|
| 1 | from model_service.caffe_model_service import CaffeBaseService |
|
|
| 2 | |
|
|
| 3 | import numpy as np |
|
|
| 4 | |
|
|
| 5 | import os, json |
|
|
| 6 | |
|
|
| 7 | import caffe |
|
|
| 8 | |
|
|
| 9 | from PIL import Image |
|
|
| 10 | |
|
|
| 11 | |
|
|
| 12 | class LenetService(CaffeBaseService): |
|
|
| 13 | |
|
|
| 14 | def __init__(self, model_name, model_path): |
|
|
| 15 | # Call the inference method of the parent class. |
|
|
| 16 | super(LenetService, self).__init__(model_name, model_path) |
|
|
| 17 | |
|
|
| 18 | # Configure preprocessing information. |
|
|
| 19 | transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape}) |
|
|
| 20 | # Transform to NCHW. |
|
|
| 21 | transformer.set_transpose('data', (2, 0, 1)) |
|
|
| 22 | # Perform normalization. |
|
|
| 23 | transformer.set_raw_scale('data', 255.0) |
|
|
| 24 | |
|
|
| 25 | # If the batch size is set to 1, inference is supported for only one image. |
|
|
| 26 | self.net.blobs['data'].reshape(1, 1, 28, 28) |
|
|
| 27 | self.transformer = transformer |
|
|
| 28 | |
|
|
| 29 | # Define the class labels. |
|
|
| 30 | self.label = [0,1,2,3,4,5,6,7,8,9] |
|
|
| 31 | |
|
|
| 32 | |
|
|
| 33 | def _preprocess(self, data): |
|
|
| 34 | |
|
|
| 35 | for k, v in data.items(): |
|
|
| 36 | for file_name, file_content in v.items(): |
|
|
| 37 | im = caffe.io.load_image(file_content, color=False) |
|
|
| 38 | # Pre-process the images. |
|
|
| 39 | self.net.blobs['data'].data[...] = self.transformer.preprocess('data', im) |
|
|
| 40 | |
|
|
| 41 | return |
|
|
| 42 | |
|
|
| 43 | def _postprocess(self, data): |
|
|
| 44 | |
|
|
| 45 | data = data['prob'][0, :] |
|
|
| 46 | predicted = np.argmax(data) |
|
|
| 47 | predicted = {"predicted" : str(predicted) } |
|
|
| 48 | |
|
|
| 49 | return predicted |
|
|
+-----------------------------------+-----------------------------------------------------------------------------------------------+
|
|
|
|
|